

Raycus Cutting Parameter

1.1.RFL-C1000 Cutting Parameter

	Fiber Core:	:25 µ m	Focus:125	mm				
		R	FL-C1000) Conti	nuous Las	er (25µm).		
Material	Thickness (mm)	Speed (m/min)	Power (W)	Gas	Pressure (bar)	Nozzle (mm)	Focus Position (mm)	Cutting Height (mm)
	0.8	18		N ₂ /	10	1.58	0	1
	1	10	1000	Air	10	1.58	0	1
	2	4			2	1.2D	+3	0.8
	3	3			0.6	1.2D	+3	0.8
Carbon Steel	4	2.3			0.6	1.2D	+3	0.8
	5	1.8	1000		0.6	1.2D	+3	0.8
	6	1.5	1000	02	0.6	1.5D	+3	0.8
-	8	1.1			0.6	1.5D	+3	0.8
	10	0.8			0.6	2.5D	+3	0.8
	0.8	20			12	1.58	0	0.8
	1	13			12	1.58	0	0.5
	2	6			12	2.08	-1	0.5
Stainless	3	3	1000	N_2	12	3.08	-1.5	0.5
Steel	4	1			14	3.08	-2	0.5
	5	0.6			16	3.58	-2.5	0.5
	0.8	18			12	1.58	0	0.8
	1	10		N,	12	1.58	0	0.5
Aluminium	2	5	1000	- 12	14	2.08	-1	0.5
	3	1.5			16	3.08	-1.5	0.5
	1	9			12	2.08	0	0.5
Brass	2	2	1000	\mathbf{N}_2	14	2.08	-1	0.5
	3	0.8			16	3.08	-1.5	0.5

Note: The parameters marked in red in the table are proofing parameters, which are greatly influenced by various factors in actual processing. They are only suitable for small-scale production, mass production and processing are not recommended. It is recommended to use higher power lasers.

1.2 25µm perforation reference for single module RFL-C1000 core.

	Power	Duty Cycle	Frequency	Nozzle Height	Pressure	Focus	Punching Time	Stop Light
	W	%	Hz	mm	bar	mm	ms	Blowing
								ms
High	1000	100	100	12	1	0	100	
								50
Middle	1000	45	100	8	0.6	-4	600	
								50
Low	1000	40	100	4	0.6	-5	2500	

RFL-C1000. Parameters of 10mm carbon steel oxygen perforation (for reference only)

1.3.Parameters of nitrogen perforation for 5mm stainless steel (for

reference only)

	Power W	Duty Cycle %	Frequency Hz	Nozzle Height mm	Pressure bar	Focus mm	Punching time ms	Stop Light Blowing ms
High	1000	100	1000	12	10	0	100	
								0
Middle	1000	50	1000	10	10	-5	500	
								0
Low	1000	45	1000	4	10	-6	1000	

2.1 RFL-C1500S Cutting Parameter

Fiber Core:50µm Focus:125mm

RFL-C1500S continuous laser (50µm).											
Matarial	Thickness	Speed	Power	Car	Pressure	Nozzle	Focus Position	Cutting Height			
Material	(mm)	(m/min)	(W)	Gas	(Bar)	(mm)	(mm)	(mm)			
	1	20	1500	N₁/Air	10	1.5S	0	1			
	2	5			2	1.2D	+3	0.8			
	3	3.6			0.6	1.2D	+3	0.8			
	4	2.5			0.6	1.2D	+3	0.8			
	5	1.8			0.6	1.2D	+3	0.8			
	6	1.4			0.6	1.5D	+3	0.8			
	8	1.2	1500	\mathbf{O}_2	0.6	1.5D	+3	0.8			
Carbon steel	10	1			0.6	2.0D	+2.5	0.8			
	12	0.8			0.6	2.5D	+2.5	0.8			
	14	0.65			0.6	3.0D	+2.5	0.8			
	16	0.5			0.6	3.0D	+2.5	0.8			
	1	20			10	1.58	0	0.8			
	2	7			12	2.05	-1	0.5			
Stainless steel	3	4.5	1500	\mathbf{N}_2	12	2.58	-1.5	0.5			
	5	1.5			14	3.05	-2.5	0.5			
	6	0.8			16	3.08	-3	0.5			
	1	18			12	1.58	0	0.5			
Aluminium (Al)	2	6	1500	N	14	2.05	-1	0.5			
(11)	3	2.5	1200	1 42	14	2.58	-1.5	0.5			
	4	0.8			16	3.08	-2	0.5			
	1	15			12	1.58	0	0.5			
Brass	2	5	1500	\mathbf{N}_2	14	2.05	-1	0.5			
	3	1.8			14	2.58	-1.5	0.5			

Note: The parameters marked in red in the table are proofing parameters, which are greatly influenced by various factors in actual processing. They are only suitable for small-scale production, mass production and processing are not recommended. It is recommended to use higher power lasers.

The reference of single RFL-C1500S core 50µm perforation.

	Power	Duty Cycle	Frequency	Nozzle Height	Pressure	Focus	Punching time	Stop Light
	W	%	Hz	mm	bar	mm	ms	Blowing ms
High	1000	100	100	12	1	0	100	
								50
Middle	1000	45	100	8	0.6	-4	600	
								50
Low	1000	40	100	4	0.6	-5	2500	

RFL-C1500S.Parameters of 16mm carbon steel oxygen perforation (for reference only).

RFL-C1500S.Parameters of 6mm stainless steel nitrogen perforation (Referenceonly)

	Power W	Duty Cycle %	Frequency Hz	Nozzle Height mm	Pressure Bar	Focus mm	Punching Time ms	Stop Light Blowing ms
High	1000	100	1000	12	10	0	100	
								0
Middle	1000	50	1000	8	10	-4	500	
								0
Low	1000	45	1000	4	10	-6	1000	

1

0.5

0.8

0.8

0.8

0.8

0.8

0.8

0.8

0.8

0.8

0.8

0.8

0.8

0.8

0.5

0.5

0.5

0.5

0.5

0.5

0.8

0.5

0.5

0.5

0.5

0.5

RFL-C2000S Cutting Parameter

Fiber Core:50µm Focus:125mm

RFL-C2000S continuous laser (50µm). Nozzle **Focus Position** Thickness Speed Power Gas Pressure **Cutting Height** Material W (mm) (mm) (m/min) (bar) (mm) (mm) 1 25 N2/ 10 1.5S 0 2 9 2000 Air 10 2.0S -1 2 5.2 1.6 1.0D +3 3 0.6 1.0D 4.2 +3 4 3 0.6 1.0D +3 5 2.2 0.6 1.2D +3 6 1.8 0.6 1.2D +3 8 1.3 0.5 2.0D +2.510 0.5 2.0D +2.51.1 12 0.9 0.5 2.5D +2.5Carbon 2000 02 0.5 +2.514 0.8 **3.0D** Steel 16 0.7 0.6 3.5D +2.518 0.5 0.6 **4.0D** +3 20 0.4 0.6 4.0D +3 28 10 0 1 1.5S 2 10 12 2.0S -1 2.0S 3 5 12 -1.5 4 2.5S -2 3 14 2000 N2 **Stainless** 5 2 14 3.0S -2.5 Steel -3 6 1.5 14 3.0S 8 **3.0S** -4 0.6 16 0 1 20 12 1.5S Aluminium 2 N2 12 -1 2.0S 10 (Al) 2000 3 4 14 2.0S -1.5 4 -2 1.5 14 2.5S 5 -2.5 0.9 16 **3.0S**

Website: figtekindustry.com.au Email: info@figtek.com.au Phone: 1300 FIGTEK (344 835

16

3.0S

-3

6

0.6

1	10		10	1 50	0	0.0
1	18		12	1.55	U	0.8

	2	8			12	2.08	-1	0.5
	3	3			14	2.58	-1.5	0.5
Brass	4	1.3	2000	N2	16	3.0 S	-2	0.5
	5	0.8			16	3.0S	-2.5	0.5

Note: It is recommended to use air or nitrogen to cut carbon steel 1 and 2 mm. The cutting speed is faster than that of oxygen, and there will be slight slagging.

Note: The parameters marked in red in the table are proofing parameters, which

are greatly influenced by various factors in actual processing. They are only suitable for small-scale production, and mass production and processing are not recommended. It is recommended to use higher power lasers.

The recommendation of 50µm perforation of single RFL-C2000S core.

	Power W	Duty Cycle %	Frequency Hz	Nozzle height mm	Pressure bar	Focus mm	Punching Time ms	Stop Light Blowing ms
High	2000	100	200	12	1	0	200	
								200
Middle	2000	45	150	8	0.7	-4	400	
								200
Low	2000	55	150	4	0.6	-6	3000	

RFL-C2000S Parameters of oxygen perforation of 20mm carbon steel (for reference only).

Parameters of nitrogen perforation for 8mm stainless steel (for reference only).

	Power	Duty Cycle	Frequency	Nozzle Height	Pressure	Focus	Punching Time	Stop Light
	W	%	Hz	mm	bar	mm	ms	Blowing ms
High	2000	100	1000	12	10	0	100	
								0
Middle	2000	50	1000	8	10	-5	500	
								0
low	2000	40	1000	4	10	-6	1000	

The perforation parameters take the limit thickness of carbon steel/stainless steel that can be penetrated at current power as an example. Punches are sorted step by step in sequence, with the high order being the first-level punch, and so on.

4.1.RFL-C3000S Cutting Parameter

Fiber Core: 50µm

Focus:150mm

RFL-C3000S continuous laser (50µm). Thickness Speed Power Pressure Focus Cutting Nozzle Material Gas Position Height (mm) (m/min) (**W**) (bar) (mm) (**mm**) (mm) 1 35 N₂/ 10 1.55 0 1 3000 2 20 Air 10 2.0S 0 0.5 1200 1.0D 2 5.5 1.6 +3 0.8 3 4 2000 0.6 1.0D +4 0.8 4 2400 1.0D 3.5 0.6 +4 0.8 5 3.2 2400 0.6 1.2D +4 0.8 6 2.7 3000 0.6 1.2D +4 0.8 8 2.2 3000 0.6 1.2D +4 0.8 Carbon O₂ 1.5 3000 10 0.6 1.2D +4 0.8 Stee 2400 3.0D 12 1 0.6 +4 0.8 14 0.9 2400 0.6 3.0D +4 0.8 16 0.75 2400 0.6 3.5D +4 0.8 18 0.65 2400 0.6 4.0D +4 0.8 20 0.6 2400 0.6 4.0D +4 0.8 22 0.55 2400 4.0D +4 0.6 0.8 45 1.5S 0 1 10 0.8 2 24 12 2.0S 0 0.5 3 10 12 2.55 -0.5 0.5 4 6.5 14 2.5S -1.5 0.5 Stainless 3000 Ν, 5 3.6 14 3.0S -2.5 0.5 Steel 3.0S 6 2.7 14 -3 0.5 16 8 1.2 3.5S -4.5 0.5 10 0.8 16 **4.0S** -6 0.5 Aluminium 1 3000 0 30 N₂ 12 1.55 0.8 (AI) 2 18 12 2.0S 0 0.5

> Website: figtekindustry.com.au Email: info@figtek.com.au Phone: 1300 FIGTEK (344 835

Aluminium	3	8			14	2.05	-1	0.5
	4	6			14	2.55	-2	0.5
	5	3.2			16	3.0S	-3	0.5
	6	2			16	3.0S	-3.5	0.5
	8	0.9			16	3.5 S	-4	0.5
	1	28			12	1.55	0	0.8
	2	15			12	2.05	0	0.5
	3	6			14	2.55	-1	0.5
Brass	4	3	3000	N ₂	14	3.05	-2	0.5
	5	2.2			14	3.0S	-2.5	0.5
	6	1.3			16	3.0S	-3	0.5

Note: It is recommended to use air or nitrogen to cut carbon steel 1 and 2mm, the cutting speed is faster than that of oxygen, and there will be slight slag hanging.

Note 2: According to the difference of gas purity and plate quality on site, the power used for debugging and the speed of debugging will be different.

Note: The parameters marked in red in the table are proofing parameters, which are greatly influenced by various factors in actual processing. They are only suitable for small-scale production, and mass production and processing are not recommended. It is recommended to use higher power lasers.

4.2 The recommendation of 50µm perforation of single RFL-C3000S core.

	Power	Duty Cycle	Frequency	Nozzle	Pressure	Focus	Punching Time	Stop Light
	W	%	Hz	height	bar	mm	ms	Blowing ms
				111111				
H∎gh	3000	100	200	12	1	0	200	
								200
Middle	3000	45	150	8	0.7	-4	2500	
								200
Low	3000	55	150	4	0.6	-6	3000	

RFL-C3000S.Oxygen piercing parameters of 22mm carbon steel (for reference only).

4.3.RFL-C3000S.Parameters of nitrogen perforation for 10mm stainless steel (for reference only).

	Power W	Duty Cycle %	Frequency Hz	Nozzle Height mm	Pressure bar	Focus mm	Punching Time ms	Stop Light Blowing ms
High	3000	100	1000	12	10	0	100	
								0
Middle	3000	35	1000	8	10	-5	500	
								0
Low	3000	35	1000	4	10	-6	1000	

The perforation parameters take the limit thickness of carbon steel/stainless steel that can be penetrated at current power as an example. Punches are sorted step by step in sequence, with the high order being the first-level punch, and so on.

5.1. RFL-C3300 Cutting Parameter:

Focus:150mm

	RFL-C3300 continuous laser (100µm).													
Material	Thickness	Speed	Power	Gas	Pressure	Nozzle	Focus Position	Cutting Height	Remark					
	mm	m/min	W		(bar	(mm)	(mm)	(mm)						
	1	30	3300	N ₂ /	10	1.58	0	1	1					
	2	12	3300	Air	10	2.08	-1	0.5						
	2	5.2	1800		1.6	1.2D	+3	0.8						
	3	4.5	1800		0.6	1.2D	+3	0.8						
	4	3.6	2400		0.6	1.2D	+3	0.8						
	5	3.2	2400		0.6	1.2D	+3	0.8						
Carbon	6	2.6	3300		0.6	1.2D	+3	0.8						
Steel	8	2.2	3300	0,	0.6	1.2D	+3	0.8						
	10	1.1-1 .3	1800-2 200		0.5	3.0D	+2.5	0.8	2					
	12	0.9-1 .1	1800-2 200		0.5	3.5D	+2.5	0.8						
	14	0.8-0 .9	2200-3 300		0.5	3.5D	+2.5	0.8						
	16	0.7-0 .8	2200-3 300		0.5	4.0D	+2.5	0.8						
	18	0.65- 0.7	2200-3 300		0.5	4.0D	+2.5	0.8						
	20	0.55- 0.65	2200-3 300		0.6	4.0D	+3	0.8	-					
	22	0.5-0 .55	2200-3 300		0.6	4.0D	+3	0.8						
	1	35			10	1.58	0	0.8						
	2	13			12	2.08	-1	0.5						
	3	7			12	2.58	-1.5	0.5]					
Stainless	4	5.5	330	\mathbf{N}_2	14	2.58	-2	0.5	1					
Steel	5	4	0		14	2.58	-2.5	0.5						
	6	3			14	3.0 S	-3	0.5]					

Website: figtekindustry.com.au Email: info@figtek.com.au Phone: 1300 FIGTEK (344 835

	-		-	1	-		T		
	8	1.2			16	3.58	-4	0.5	
	10	0.8			16	4.0S	-5	0.5	
	1	25	3300	\mathbf{N}_2	12	1.58	0	0.8	
	2	12			12	2.0S	-1	0.5	
	3	8			14	2.08	-1.5	0.5	
	4	5			14	2.08	-2	0.5	
	5	3			16	3.0S	-2.5	0.5	
	6	2			16	3.08	-3	0.5	
	8	0.8			16	3.58	-4	0.5	
	1	22			12	1.58	0	0.5	
	2	12			12	2.08	-1	0.5	
Brass	3	5		N ₂	14	2.58	-1.5	0.5	
	4	3	330 0	- 12	14	3.08	-2	0.5	
	5	2			14	3.08	-2.5	0.5	
	6	1.3			16	3.08	-3	0.5	

Note: It is recommended to use air or nitrogen to cut carbon steel 1 and 2mm, the cutting speed is faster than that of oxygen, and there will be slight slag hanging.

Note 2: According to the difference of gas purity and plate quality on site, the power used for debugging and the speed of debugging will be different.

Note: The parameters marked in red in the table are proofing parameters, which are greatly influenced by various factors in actual processing. They are only suitable for small-scale production, and mass production and processing are not recommended. It is recommended to use higher power lasers.

5.2.100µm perforation reference for multi-module RFL-C3300 core.

	Power	Duty Cycle	Frequency	Nozzle Height	Pressure	Focus	Punching Time	Stop Light
	w	%	Hz	mm	bar	mm	ms	Blowing
								ms
High Position	3300	100	200	12	1	0	100	
								200
Mid-position	3300	45	150	8	0.6	-5	200	
								200
Low Position	3300	50	150	4	0.6	-6	2500	

RFL-C3300. Oxygen piercing parameters of 22mm carbon steel (for reference only).

5.3. RFL-C3300. Parameters of nitrogen perforation for 10mm stainless steel (for

reference	only).
-----------	--------

	Power W	Duty Cycle %	Frequency Hz	Nozzle Height mm	Pressure bar	Focus mm	Punching Time	Stop Light Blowing ms
							ms	
High Position	3300	100	1000	12	10	0	200	
								0
Mid-Position	3300	50	1000	8	10	-5	500	
								0
Low-Position	3300	40	1000	4	10	-7	1000	

6.1.RFL-C4000 Cutting Parameter

Fiber Core:100µm Focus:150mm

Material	Thickness (mm)	Speed (m/min)	Power (W)	Gas	Pressure (bar)	Nozzle mm	Focus Position mm	Cutting Height (mm)	Remark		
	1	35	4000		10	1.58	0	1			
	2	15	4000	N ₂ /	10	2.08	-1	0.5	1		
	3	10	4000	Air	10	2.08	-1.5	0.5			
	3	4.5	1800		0.6	1.2D	+3	0.8			
	4	3.5	2400		0.6	1.2D	+3	0.8			
	5	3.2	2400		0.6	1.2D	+3	0.8			
	6	2.8	3000		0.6	1.2D	+3	0.8			
Carbon	8	2.3	3600	O ₂	0.6	1.2D	+3	0.8	2		
	10	2	4000		0.6	1.2D	+3	0.8			
	12	1.2	1800-220 0		0.5	3.0D	+2.5	0.8			
	14	1	1800-220 0				0.5	3.5D	+2.5	0.8	
	16	0.8	2200-260 0		0.5	3.5D	+2.5	0.8			
	18	0.7	2200-260 0		0.5	4.0D	+2.5	0.8			
	20	0.65	2200-260 0		0.5	4.0D	+3	0.8			
-	22	0.6	2200-280 0		0.5	4.5D	+3	0.8	-		
	25	0.5	2400-300 0		0.5	5.0D	+3	0.8			
	1	40			10	1.58	0	0.8			
	2	20			12	2.08	-1	0.5			

Website: figtekindustry.com.au Email: info@figtek.com.au Phone: 1300 FIGTEK (344 835

	3	12			12	2.08	-1.5	0.5	
Stainless	4	7			12	2.58	-2	0.5	
Steel	5	4.5	4000	N_2	14	2.58	-2.5	0.5	
	6	3.5			14	3.0S	-3	0.5	
	8	1.8			14	3.08	-4	0.5	
	10	1.2			16	4.0 S	-5	0.5	
	12	0.8			16	4.0S	-6	0.5	
	1	30			12	1.58	0	0.6	
	2	20			12	2.08	-1	0.5	
	3	13			14	2.08	-1.5	0.5	
	4	7		\mathbf{N}_2	14	2.58	-2	0.5	
Aluminiu	5	5	4000		14	2.58	-2.5	0.5	
m (Al)	6	3			16	3.08	-3	0.5	-
	8	1.3			16	3.08	-4	0.5	
	10	0.8			16	3.58	-5	0.5	
	1	28			12	1.58	0	0.6	
	2	15			12	1.5 S	-1	0.6	
	3	8			14	2.0S	-1	0.6	
Brass	4	5	4000	N_2	14	2.58	-2	0.5	
	5	3		_	14	3.0S	-2	0.5	
	6	2.5		-	16	3.0S	-2.5	0.5	
	8	1			16	3.0S	-4	0.5	

Note 1: It is recommended to cut carbon steel 1-3mm with air or nitrogen, and the cutting speed is faster than that with oxygen, with slight slag hanging.

Note 2: According to the difference of gas purity and plate quality on site, the power used for debugging and the speed of debugging will be different.

Note: The parameters marked in red in the table are proofing parameters, which are greatly influenced by various factors in actual processing. They are only suitable for small-scale production, and mass production and processing are not recommended. It is recommended to use higher power lasers.

6.2.100µm perforation reference for multi-module RFL-C4000 core.

	Power W	Duty Cycle %	Frequency Hz	Nozzle Height mm	Pressure bar	Focus mm	Punching Time ms	Stop Light Blowing ms
High Position	4000	100	200	12	1	0	100	
								300
MidPosition	4000	45	200	8	0.6	-5	200	
								300
Low Position	4000	50	200	4	0.6	-6	3000	

RFL-C4000. 25mm carbon steel perforation parameters (for reference only).

6.3.FL-C4000. Parameters of nitrogen perforation for 12mm stainless steel (for

reference only).

	Power W	Duty Cycle %	Frequency Hz	Nozzle height mm	Pressure bar	Focus mm	Punching Time ms	Stop Light Blowing ms
High position	4000	100	1000	12	10	0	100	
								0
Mid-position	4000	50	1000	8	10	-6	500	
								0
Low post	4000	45	1000	4	10	-8	1500	

٦

RFL-C6000 Cutting Parameter

Fiber Core:100µm

Г

Focus:100mm

		R	FL-C60	00 con	tinuous l	aser (1	00μm).		
	Thickness	Speed	Power	Gas	Pressure	Nozzle	Focus Position	Cutting Height	Remark
Material	mm	m/min	W		bar	mm	mm	mm	
	1	45			12	1.5S	0	1	
	2	25			12	2.05	-1	0.5	1
	3	14	6000	N2/	14	2.0S	-1.5	0.5	
	4	8		Air	14	2.05	-2	0.5	1
	5	6.4			16	3.0S	-2.5	0.5	
	6	5			16	3.5S	-3	0.5	
	3	3.6-4.2	2400		0.6	1.2E	+3	0.8	2
	4	3.3-3.8	2400		0.6	1.2E	+3	0.8	
	5	3-3.6	3000		0.6	1.2E	+3	0.8	
	6	2.7-3.2	3300		0.6	1.2E	+3	0.8	
	8	2.2-2.5	4200		0.6	1.2E	+3	0.8	
	10	2.0-2.3	5500		0.6	1.2E	+4	0.8	
Carbon Steel	12	0.9-1	2200		0.6	3.0D	+2.5	0.8	
	12	1.9-2.1	6000		0.6	1.2E	+5	0.8	
	14	0.8-9	2200	\mathbf{O}_2	0.6	3.5D	+2.5	0.8	
	14	1.4-1.7	6000		0.6	1.E	+5	1	
	16	0.8-0.9	2200		0.6	4.0D	+2.5	0.8	
	16	1.2-1.4	6000		0.6	1.4E	+6	1	
	18	0.65-0.75	2200		0.6	4.0D	+2.5	0.8	
	20	0.6-0.7	2400		0.6	4.0D	+3	0.8	
	22	0.55-0.65	2400		0.6	4.0D	+3	0.8	
	25	0.5	2400		0.5	5.0D	+3	1	
Stainless	1	60	(000		10	1.58	0	0.8	
Steel	2	30	6000	N ₂	12	2.05	-1	0.5	
	3	18			12	2.58	-1.5	0.5	
	4	12			14	2.58	-2	0.5	

Website: figtekindustry.com.au Email: info@figtek.com.au Phone: 1300 FIGTEK (344 835

	-	-	-						-
	5	8			14	3.0S	-2.5	0.5	_
	6	5	_		15	3.05	-3	0.5	_
	8	3.8	_		15	3.0S	-4	0.5	_
	10	2			15	3.58	-6	0.5	_
	12	1.2			16	3.5 S	-7.5	0.5	
	14	1			16	4.0S	-9	0.5	
	16	0.6			18	4.0S	-10.5	0.5	
	18	0.5			20	5.0S	-11	0.3	
	20	0.3			20	5.0S	-12	0.3	
	1	50		N ₂	12	1.5S	0	1	_
	2	25			12	2.08	-1	0.5	
	3	16			14	2.58	-1.5	0.5	
	4	10	6000		14	2.58	-2	0.5	
	5	6			14	3.0S	-3	0.5	
A l	6	4			16	3.0S	-3	0.5	
Alummum	8	2			16	3.05	-4	0.5	
	10	1.2			18	3.58	-4.5	0.5	
	12	0.7			18	4.05	-5	0.5	
	14	0.5			18	4.0S	-5	0.3	
	16	0.4			20	5.0S	-8	0.3	
	1	40		N ₂	12	1.58	0	1	
	2	20			12	2.05	-1	0.5	
Brass	3	14			14	2.58	-1	0.5	
	4	9	6000		14	3.0S	-1.5	0.5	
	5	5.5			14	3.0S	-2	0.5	
	6	3.8			16	3.0S	-2.5	0.5	
	8	1.8			16	3.58	-3	0.5	
	10	1			16	3.5 S	-3	0.5	
	12	0.7			18	4.0S	-4	0.3	

Note: It is recommended to cut carbon steel 1-6mm with air or nitrogen. The cutting speed is faster than that with oxygen, and there will be slight slag.

Note 2: According to the difference of gas purity and plate quality on site, the power used for debugging and the speed of debugging will be different.

Note: The parameters marked in red in the table are proofing parameters, which are greatly influenced by various factors in actual processing. They are only suitable for small-scale production, and mass production and processing are not recommended. It is recommended to use higher power lasers.

100µm perforation reference for multi-module RFL-C6000 core.

	Power W	Duty Cycle %	Frequency Hz	Nozzle height mm	Pressure bar	Focus mm	Punching Time ms	Stop Light Blowing
								ms
High position	6000	50	300	18	1	0	100	
								300
Mid-position	6000	45	300	12	0.8	-5	500	
								300
Low Position	6000	45	300	8	0.7	-6	1000	

RFL-C6000. 25mm carbon steel perforation parameters (for reference only)

RFL-C6000. Parameters of nitrogen perforation for 20mm stainless steel (for reference only).

	Power W	Duty Cycle %	Frequency Hz	Nozzle Height mm	Pressure bar	Focu s mm	Punching Time ms	Stop Light Blowing ms
High Position	6000	100	800	12	10	0	100	
								0
Mid-Position	6000	60	600	8	10	-6	500	
								0
Low-Position	6000	45	600	4	10	-8	1500	

8. Poor Cutting & Solutions.

End face schemati	problem description	Possible reasons	solution
с			
	Produce drops.	Focus is too low; The	Raise the focus; Reduce the feed
	Small regular burrs.	feed rate is too high.	rate.
	Irregular filiform burrs growing	Focus is too high; The	Lower the focus; Increase the feed
	on both sides, large plate	feed rate is too low;	rate; Increase air pressure.
The second second	Surface discoloration	Air pressure is too	
		low.	
	Long irregularities are	Nozzle is not aligned;	Center the nozzle; Reduce the focal
	generated only on the cutting	Focus is too high; The	point; Increase air pressure;
	side.The burr.	air pressure is too	Increase speed
		low; Speed is too low.	
	Generating plasma gas on a	The feed rate is too	Press the pause button
25	straight section.	high; Power is too low;	immediately to prevent slag
		Focus is too low.	splashing on the focusing mirror;
			Reduce the feed rate; Increase
			power; raise focus
	Material is discharged from	Power is too low; The	Press the pause button immediately
	above.	feed rate is too large;	to prevent slag splashing on the
		Air pressure too high.	focusing mirror; Increase power;
			Reduce the feed rate; decrease
			atmospheric pressure

The index line at the bottom is very. The large offset, Cut at the bottom. Wider mouth	The feed rate is too high; The laser power is too low; The air pressure is too low; focus Too high	Reduce the feed rate; Increase laser power; Increase gas. Pressure; Lower focus.
The burr on the bottom surface is similar to slag, which is in the form of drops and contained.Easy to remove	The feed rate is too high; The air pressure is too low; Focus too high.	Reduce the feed rate; Increase air pressure; Lower focus.
On the bottom. Metal burrs are difficult to remove.	The feed rate is too high; The air pressure is too low; Impurity of gas; Focus too high.	Reduce the feed rate; increase Air pressure; Use a purer gas; Lower focus.
Just on one side. There are burrs on it.	Nozzle is not aligned; spurt The mouth is defective.	Center the nozzle; Replace nozzle.
Material is discharged from above.	Power is too low; The feed rate is too high.	Press the pause button immediately to prevent slag splashing on the focusing mirror; Increase power;Reduce the feed rate.
Rough cutting surface.	Focus is too high; Atmospheric pressure is too high; feed rate Too low; Material too hot.	Lower the focus; Reduce the gas pressure; Increase the feed rate; coolant

		Atm	ospheric	
		pressure is too high;		Reduce air pressure; Increase the
	Generate craters	The	feed rate is too	feed rate; Lower the focus; Use
A Loss Martine, restant in		low;	Focus is too	better quality materials.
		high	; Rust on the	
		plat	e surface;	
		Wor	kpiece passing	
		Hea	at; Material is	
		imp	oure.	
Cutting gap is too narrow:	Cutting section		Possible reason	8
The upper layer is streaked, and slag scraping appears due to insufficient oxygen on the lower surface of the slit.			The feeding spee	Focus is too low.
			Ai	ir pressure is too low.

Nozzle name	Name symbol	Nozzle profile	Shape characteristics	use
Single Layer	S(Single)		The inner wall is conical, and the slag blowing gas flow rate of high-pressure gas is large.	Melting cutting of stainless steel, aluminum plate and other materials.
Double-Layer	D(Double)	単层 复合 で で し	Double-layer compounding adds inner core on the basis of single layer.	Double layer size above 2.0 is used for cutting carbon steel sand surface.
High Speed Double-Layer	E		The nozzle is pointed in shape, and the inner core edge has three holes compared with the common one. Large layer	Mainly used for high-power and high-speed smooth cutting of carbon steel.
High Speed Single-Layer	SP		The nozzle is pointed in shapeand the inner wall is conical orstepped round. cone	Mainly used for high-power and high-speed glossy cutting of thick carbon steel.
Storm Nozzle	B(Boost)		On the basis of single-layer nozzle, there is one layer at the nozzle mouth. steps	Can be used for cutting stainless steel with high power nitrogen and low pressure.

9.Nozzle Selection of Cutting Process